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UPPER SEMICONTINUITY OF ATTRACTORS FOR APPROXIMATIONS

OF SEMIGROUPS AND PARTIAL DIFFERENTIAL EQUATIONS

by

J. K. Hale, X.-B. Lin and G. Raugel

ABSTRACT
I

Suppose a given evolutionary equation has a compact attractor and the

evolutionary equation is approximated by a finite dimensional system. Conditions

are given to ensure the approximate system has a compact attractor which

converges to the original one as the approximation is refined. Applications are

given to parabolic and hyperbolic partial differential equations.
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I. Introduction.

Suppose X is a Banach space and T(t), t ) 0, is a CF-semigroup on X with

r ) 0; that is, T(t), t ) 0, is a semigroup with T(t) continuous in t, x together with

the derivatives in x up through the order r.

Following standard terminology (see, for instance, [Hale, 2]), a set B C X

is said to attract a set C C X under the semigroup T(t) if, for any c > 0, ther

is a to = to(B,C,E) such that T(t)C C N(B,E) for t ) to, where N(B,E) denotes

the E-neighborhood of B. A compact invariant set A is said to be a local

attractor if there exits and open neighborhood U of A such that A attracts U.

The set A is an attractor if, for any bounded set B in X, A attracts B.

Conditions for the existence of an attractor may be found in [Hale, 2].

Now suppose the semigroup depends on a parameter X belonging to an open

subset of a Banach space, say T(t) = Tk(t), where Tx(t)x is continuous in (t,x,k),

the continuity in X being uniform on bounded sets. If AX is a local attractor

for T 0(t), then additional smoothing properties of TX(t) will imply there is a

neighborhood V of Xo such that TX(t), k E V, has a local attractor AXand AX

is uDDer continuous at No, that is, Bx(A ,,A )- 0 as X o where, for any

two subsets A,B of X,

SX(A,B) = sup distx(x,B)
xEA

and distx(x,B) inf Ilx-yIjx .
yGB

The most general result of this type is due to (Cooperman] and may be found

also in [Hale, 1]. The result for gradient systems is in [Hale, 2].

The spirit of this paper relates to the above property of upper semicontinuity

of a local attractor. Here we consider semigroups Th(t) depending on a parameter

h > 0 which "approximate" the semigroup T(t) and give conditions under which

.
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there exists a local attractor Ah for Th(t) with the property that S(Ah,A) - 0 as h -

0. The essential difference between the results here and the ones mentioned before

is that the approximate semigroups can correspond to Galerkin approximations,

splines or discretizations in time of evolutionary equations. These

approximations have no uniform continuity property with respect to h.

The outline of the paper is as follows. In Section 2 we give a general

approximation result which attempts to bring out the essential elements of the

approximate and exact semigroups to ensure that there is a local, compact

attractor which is upper semicontinuous. We also give one result in which we

assume the approximate semigroups have a local compact attractor and tlhen infer

that the exact semigroup has a compact attractor. For the Navier-Stokes equation

and the case in which the local attractor for each approximation is a point,

Constantin, Foias and Temam have given conditions which ensure that the

original equations have an equilibrium. Schmitt, Thompson and Walter discuss the

solution of an elliptic boundary value problem in an infinite strip by analyzing

solutions of approximate differential equations. This aspect of the problem is

important but much more difficult and will be developed further in subsequent

publications. The remainder of the paper is devoted to giving specific

approximation schemes for particular evolutionary systems for which the

hypotheses of Section 2 are satisfied. These applications include spectral projection

methods for sectorial evolutionary equations and Galerkin approximations for

parabolic equations as well as discretizations in time. Some results about the

approximation of the Navier-Stokes equations and of a damped hyperbolic wave

equation also are given.

In this paper, the convergence of the attractor Ah to A as h - 0 is considered

only in the sense of sets. The relationship between the dynamics on the

attractors also must be discussed. This problem is much more difficult and

'" .. . . . .- ... . L .J . . . . . . " ".. . . ". . " ".". " " " - " " -" ' " '
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requires some knowledge of the flow on A. Some results on the case in which the

flow on A is Morse-Smale already have been obtained and will appear in [Lin and

Raugel]. For the case of a scalar parabolic equation in one space dimension with

a cubic nonlinearity, this latter property has been discussed for space and time

approximations using the Conley index [Khalsa]. Numerical computations using

Galerkin approximations have been done for a similar example [Rutkowski],

[Mora].
d

'.
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2. A General Approximation Result

In this section, we give a general result on the approximation of a local

attrractor by "approximate" semigroups. These results are very similar to local

versions of the ones of [Cooperman] (see also [Hale, 1]). More precisely, let h > 0

be a parameter which will tend to 0 and let (Xh)h be a family of subspaces of X

such that

(2.1) lim distx(x,Xh) 0, for any x in X.
h-0

Let Th(t), t ), 0, be a C'-scmigroup on Xh with s ) 0. Actually Th(t)xh need not be

a priori defined for all t > 0. More precisely, we shall only assume that Th(O) =

ldx, Th(t+s)xh = Th(s)Th(t)xh for s ) 0, t ) 0 (as soon as Th(t+s)xh and Th(s)Th(t)xh

are well defined), that Th(t)x h is continuous in t and Xh when it is defined and

finally, that Th(t)xh is left-continuous at t, if Th(t)xh exists on [to,t 1 ). The

semigropus Th(t) are said to conditionally aporoximate T(t) on a set U C X

uniformly on an interval I _ [t,tt] C R + if there are a constant h(I,U) > 0 and a

function r(h,I,U) defined for 0 < h ( h(I,U) such that

(2.2) lim r(h,I,U) = 0
h-0

and, for any " < h 4 h(I,U), if u G U r) Xh has the property that T(t)u, Th(t)u are

defined and belong to U for t C [0,t 2] where to < t2 ( t1, then

(2.3) I IT(t)u - Th(t)uIIx ( n(h,I,U) for to ( t ( t2

The semigroups Th(t) are said to aporoximate T(t) on a set U C X uniformly on an

interval I C R + if Th(t) conditionally approximates T(t) on U uniformly on I and

if, moreover, for 0 < h 4 h(l,U) and any u G U () Xh, the functions T(t)u, Th(t)u

are defined and satisfy the inequality (2.3) for all t G I.

. ... .,. .. j - 2.-
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The semigroups Th(t) are said to (conditionally) approximate T(t) on U C X

uniformly on compact sets of R+ if Th(t) (conditionally) approximates T(t) on U

uniformly on any compact interval I C R+ . We recall that, in the following, N(B,c)

denotes the E-neighborhood of a set B in the Banach space X.

Lemma 2-1. Assume that there exist a bounded set Bo C X and an open set

Uo D N(Bo,do) for some do > 0 such that Bo attracts Uo under T(t). Moreover, assume

that there exist an open set U1 D N(Bod 1 ) for some d1 > 0 and a constant to t 0 such

that Th(t) approximates T(t) on U1 uniformly on compact sets of [to,-). Then, for any

60 > 0, there are ho > 0 and T 0 > t0 such that, for 0 < h ( ho, for t k TO,

Th(t)(UO n U1 n Xh) C N(B,eo).

Proof. Without any restriction, we can assume that co ( inf(do,dl). As Bo

attracts U0, there exists To > to such that, for t ?I To, T(t)U0 C N(BoEo/2). Thanks

to the hypothesis (2.2), there exists ho > 0 such that, for h ( ho, Y7(h,2To,U 1 ) ( E0/2.

Therefore, for h ( ho, for T ( t 4 2To, Th(t)(UO A U1 n Xh) C N(B,Eo). Let us

remark that Uo A) U1 n Xh 0 0, because Uo n U1 D N(Boinf(do,d1 )).

Now, let us prove by induction that, for t ) TO, Th(t)(UO A U1 A Xh) C

N(BoCo). Assume that, for To ( t ( hT, Th(t)(UO f UA A Xh) C N(Bo,e0 ) and let us

prove this property for T ( t ( (n+l)T o. If nT0 a t 4 (n+l)T o, t = (n-l)T0 + T with

T 0 T a,2T o. Let uoheU0 X h ; we have:

Th(t)uOh = Th(T)Th(n-l)TO)UOh

By the induction hypothesis, Th((n-l)o)UOh 0 N(BoEo) A Xh, and hence,

Th((n-l)TO)UOh C U0 A U 1 U Xh. Therefore, on the one hand, T(T)Th((n-)TO)UOh C

N(B, 0 /2), and, on the other hand,

I IT(T)Th((n-I)TO)UOh - Th (T)Th((n-I)To)uOhIIx E0/2

A

* -
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Finally Th(T)Th((n-l)To)uoh G N(oe) for To T 2O ieT~)~ (o )

for To t 4 (n+l)TO.

If the dynamical system T(t) has a local compact attractor A, the hypotheses

of Lemma 2.1 can be weakened as we shall see below.

Proposition 2.2. Assume that there exist a cornpact set A C X and an open

neighborhood N1 of A such that A attracts N,. Suppose that there are constants ho > 0,

50 > 0, to 0 and two open neighborhoods N2,N3 of A, with N, C 2 C ( 2,6)

N3, such that, for 0 < h 4

(i) T(t)N 1 C N 2 for t ) 0,

(ii) Th(t)(NI r) Xh) C N2 for 0 t to,

(iii) for any xh C N(N 2 160 ) () Xh, there exists t(Xh) > 0 such that

Th(t)xh G N3, for 0 4 t 4 t(Xh)

Also assume that Th(t) conditionally approximates T(t) on N3 uniformly on compact

sets of [t0 ,+-). Then, for any co > 0, there are h > 0 and To > to such that, for 0 < h

4 h and t ;kTo

(2.4) Th(t)(Nj nl Xh) C N(A,e 0).

Proof. As Th(t) conditionally approximates T(t) on N3 uniformly on compact sets

of t0 ,~),for any t1 > t, there is a positive number h(tj) so that 7(hjt 0,tj],N)<

604 for h 4, h(tj). For any xhG N, r) Xh and any t, to 4 t 4 t,, we want to prove

that Th(tOxh G N3, because this will show that I IT(t)xh - Th(t)xhl IX 4 7(hjt 0,t1],N3)

for to 4 t 4 t1 and we may apply Lemma 2.1. Assume this is not the case. Then,

by (ii) and (iii), there exists t2l to < t2 4 t, such that Th(t)Xh C N3 for 0 ( t < t

and Th(t 2)Xh (i N3. But then Th(tOxh C N(N 2960/4) for 0 4 t < t2 and hence Th(t2)Xh

C N(N 2,50/2), which is a contradiction. This proves the proposition.

........................................
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Remark 2.3. If A is a local, compact attractor under the semigroup T(t), then A

is stable and there always exist neighborhoods N1 ,N2 satisfying (i) in Proposition

2.2.

To state the next result, we need some additional terminology. Following

[Hale, LaSalle and Slemrod] (see also [Hale and Lopez]), a serigroup T(t), t ? 0, on

a Banach space X is said to be asvmnoticallv smooth if, for any bounded set B C

X, there is a compact set J = J(B) C X such that J attracts the set (x C B: T(t)x E B

for t ) 0). A special case of asymptotically smooth maps are a-contracting

semigroups (see [Hale and Lopez]). In particular, T(t) is a a-contracting semigroup

if T(t) = S(t) + U(t) where U(t), t ?, 0, is completely continuous and S(t), t N 0, is a

bounded linear operator for which there is a 0 > 0 such that I IS(t)[ Ix 4 exp(-Ot),

t ~0

The next result gives conditions for the existence of compact attractors Ah for

Th(t) and the lower sericontinuity of these sets "at h - 0".

Theorem 2.4. Assume that T(t) has a local, compact attractor A and that the

hypotheses of Proposition 2.2 are satisfied. If each Th(t) is asymptotically smooth,

then there is ho > 0 such that, for 0 < h 4 ha, Th(t) admits a local, compact attractor

Ah, which attracts N 1 () Xh. Moreover, SX(Ah,A) - 0 as h - 0.

Proof. From Proposition 2.2, it follows that Th(t)(NI r) Xh), t ) 0, belongs to a

bounded set in Xh. The results in [Hale, LaSalle and Slemrodj (see also [Hale 21)

imply the existence of a compact attractor Ah for Th(t) which attracts NC ( Xh

Owing to Relation (2.4), we can take Ah C N(A 0,9o). Since Eo is arbitrary, we obtain

the result.

Corollary 2.5. Assume that T(t) has a local compact attractor A and that the

conditions of Proposition 2.2 are satisfied. If each space Xh is finite-dimensional, the

,x ; , ,.,., -..-.,_..-.., .. -...,:...,-., ..-, ,.......°...- .... ,....,............. ......-... •..... -..-. . ..
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conclusions of Theorem 2.4 hold.

In the general case the hypotheses of Theorem 2.4 do not enable us to give any

information about the distance Sx(A,Ah). However, if A is reduced to a point xo,

then, of course, under the hypotheses of Theorem 2.4, 6(A,Ah) -" 0.

In the next result, we assume the attractors for the approximate semigroups

exist and conclude that the original semigroup admits an attractor.

Proposition 2.6. Suppose there are bounded open sets N1 C N2 C X and positive

constants Eo,  0 , ho, to, 60 such that, for each 0 < h 4 ho, the semigroup Th(t) has a

local compact attractor Ah C X, with N(Ah,'o) C N1 and that

(i) Ah attracts N 1 uniformly, that is, for any E1 > 0, there is a T > 0,

independent of h, such that Th(t)(Nl A Xh) C N(AhEl) for t ) TI,

(ii) Th(t)(NI A Xh) C N. A Xh, for all t ;k 0,

(iii) T(t)N 1 C N 2 for 0 ( t 4 to

(iv) T(t)x is well defined for x E N(N 2 ,Eo) for 0 4 t 4 o.

Also assume that Th(t) conditionally approximates T(t) on N(N 2,Eo ) uniformly on

compact sets of [tot+-). Then. there exists T to such that, for t ; T,

(2.5) T(t)N1 C N 1

If, in addition, T(t) is asymptotically smooth, then T(t) has a local compact attractor A

attracting N1 and, for any c > 0, there exists h, > 0 such that, for 0 < h 4 h(,

(2.6) A C N(Ahe).

Proof. Let us first show that

(2.7) T(t)N1 C N(N2 ,Eo) for all t , 0

Owing to (iii), T(t)N, c N(N 2 9,o) for 0 4 t 4 to. Suppose that the property (2.7) is

'.
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not true; then there exist x e N1 and t2 > to such that T(t2)x E (N(N2,Eo)) and

T(t)x E N(N 2,Eo) for 0 4 t < t2 (the existence of t 2 is ensured by (iv)). Thanks to

the approximation property (2.1), there exist a positive number h 2 and, for 0 < h

h2, an element xhE N1 r) Xh close enough to x so that, for 0 4 t 4 t , 0 < h 4 h ,

(2.8) IIT(t)xh - T(t)xlIx < "

Moreover, there exists hs > 0, with h3 4 inf(ho,h2 ) such that, for 0 < h 4 hs ,

(2.9) ?(h,[tot 2 ],N(N 2,E0)) < f-.

Thus, since Th(t) conditionally approximates T(t) on N(N 2,Eo) uniformly on [tot ],

(2.8), (2.9) and (ii) imply that T(t,)x E CI(N(N2 ,2c 0/3)), which is a contradiction.

Then (2.7) is true.

Next we show that T(t)N, C N, for t ) T, where T ) to is a constant. Owing

to the property (i), there exists T 0 to such that, for 0 < h 4 h19 Th(t)(Nl n Xh) C

N(Ah ,I0/1) for t * T. Now let x C NI be given. As above, there exist a positive

number h4, with h4 4 ho, and, for 0 < h 4 h., an element xh e N1 r) Xh close to x

such that, for 0 < h h,%V

(2.10) IIT(t)xh -T -- o for all t, with 0 ( t 4 2T

and

(2.11) '(h,[t 0,2T], N(N2 ,Eo)) <

As (2.7) holds and Th(t) conditionally approximates T(t) on N(N2,Eo) uniformly on

[to,2T ], we derive from (2.10) and (2.11) that T(t)x E N(Ah, 3-Co/4) C Np for T 4 t .

2T.

An easy induction, similar to the one of the proof of lemma 2.1, shows that

T(t)x N 1 for t 0 T.

If, moreover, T(t) is asymptotically smooth, we conclude, by using a result of

a,
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[Cooperman] that T(t) has a compact attractor A C N, attracting N. It remains to

prove (2.6). Let e > 0 be given. By (i), there exists T1 > to, independent of h, such

that Th(t)(Nl n Xh) C N(AhE/3) for t ), T, and for 0 < h 4 h,. Due to the

compactness of A, there exists h, 0 < h5 4 h,, such that, for 0 < h 4 h5, with each

element x E A we can associate an element Phx in N1 () X. such that

IIT(t)x - T(t)PhxIlx 4 c/3 for 0 4 t ( T1.

Finally, there exists hp 0 < h1 4 h5, such that, for any xh N1 f) Xh,

IIT(t)xh - Th(t)XhlIx 4 c/3 for to 4 t 4I .

Thus, for 0 < h 4 hl, T(T,)x N(Ah,£), for all x in A; and from the equality

T(T1)A = A, we deduce the inclusion (2.6).

Remark 2.7. Property (2.6) means that 6 x(AAh) 0 0 as h - 0. Let us remark that,

under the hypotheses of Proposition 2.6, Bx(Ah,A) also tends to 0 as h tends to 0.

Indeed, as A attracts N, for any c, > 0, there exists T1 > to such that T(t)Ah C

N(A,c,/2) for t ) tj. On the other hand, there exists h > 0 such that, for 0 < h 4

h, n(h,[t 0 ,T1 ],N(N2 ,£0 )) 4 c,/2. Thus, Th(tl)Ah C N(A,cl) and, since Th(tl)Ah = Ah,

Ah C N(A,c,), for 0 < h 4 h.

Remark 2.8. The assumption (i) in Proposition 2.6 that Ah attracts N1 uniformly is

a very strong condition. However, one would expect numerical procedures to have

such a property. The detailed structure of the flow on the attractor Ah could vary

considerably with h. This depends on the flow defined by T(t). Consider, for

example a scalar equation u = f(u), u E R, where the flow is given by .

If one approximates this flow numerically, two situations could arise. One could

obtain either the approximate flow ) - (- or )of* ) - . The

global attrractor in one case is a point and in the other is a line segment. The
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global attractor for the original problem is a line segment. For one of the

approximation schemes, the attactors Ah approach a point as h -, 0 which is a local

attractor for T(t) and, for the other, Ah approaches a line segment which is the

global attractor for T(t). If the flow on the attractor for T(t) is less sensitive to

small perturbations, this situation will not arise.

Let us now turn to the question of how close Ah is to A with the measure of

closeness given by Sx(Ah,A). We give some results in this direction for some

particular cases.

Proposition 2.9. Suppose the hypotheses of Theorem 2.4 are satisfied with the

associated function n(h,I,N 3 ) = ch"' for some positive constants c, yo, independent

of h and I C [to,-). Then there is a constant c, > 0 such that Bx(Ah,A) ( cjh7  for

0 < h ho.

Proof. The proof follows from the proof of Proposition 2.2 and Theorem 2.4 using

the special function n(h,I,N,) = ch 0

The hypothesis on n(h,I,N3 ) in Proposition 2.9 is not usually satisfied. A

more reasonable condition on n(h,I,N3 ) is given in the next result, but then we

must impose stronger attractivity properties of A.

Proposition 2.10. Assume the hypotheses of Theorem 2.4 are satisfied with the

associated function '7(tto,tj,N3) = coh7 oe%,1 for some positive constants co, 7o' %'

independent of h and t1 . If there are an open neighborhood U of A and positive

constants cl, 130 such that

Sx(T(t)U,A) ee , t 0,

then, for h 4 ho, we have

... .1. ,. I " N l l " ' ' + . . " " " + t _¢ . ... . .. :.



-12-

SSX(Ah,A) 4chO o

for some positive constant c.

Proof. If

t4= log - h 7010'(08 0
0 C1

then Sx(T(t)U,A) c0 C h7 9 /(% ) for t t,. Since A h is invariant, for any

Xh E Ah, there is a Yhe Ah such that xh = Th(tl)yh. If x = T(tl)yh, then

IIxh - xllx = I ITh(tl)yh - T(tl)yh I IX ( CO 130 c h -160 0/bc 6 +0

This completes the proof.

Remark 2.11. If T(t) is a gradient system (for the definition, see [Hale, 3)
for

which there is a t, > 0 such that T(t) is either compact for t > t1 or an

c-contraction, and if the set of equilibrium points E (i.e. the points x such that

T(t)x - x, t ) 0) is bounded, then we know that T(t) has a compact attractor A.

If, in addition, each element of E is hyperbolic, then E is a finite set, dim WU(4,) <

+- and A = U WU(0) where WU(O) is the unstable set of *. Furthermore, there is

an open neighborhood U of A such that Sx(T(t)U,A) - 0 exponentially as t

Thus, if the approximate semigroups Th(t) satisfy the hypotheses of Theorem

2.4 with P(h,[to,tj),N3 ) = coh e , Th(t) admits a local compact attractor Ah for h

small enough and, by Proposition 2.10, we obtain a good estimate of B(Ah,A).

Now assume that, for h > 0, Th(t) is a gradient system. Then, one can prove

that, for h small enough, the set of equilibrium points Eh of Th is finite and has

the same cardinality as E and one can give an estimate of Sx(E,Eh) and Sx(Eh,E).

Moreover Ah = U WU(0h) where WU(Oh) is the unstable set of Oh. (For more details,
OhEEh

.. , . : . : . . , . .- ' ' ' ', . ' ' , . ' ' , -: . " - • ," , " - .. "." ." " . -" ' " . .. .. . . " ' ". . . . . . . - , - - . . . , . . • . . . . . . . . , . . . . . . .,., . , , - . - I " -
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see [Lin and Raugel]).

In Remark 2.11, we have encountered a situation where the conditions of

Proposition 2.10 are satisfied. One would expect that the hypothesis in Proposition

2.10 that T(t)U - A exponentially as t - +- will be satisfied in specific

evolutionary problems at least generically with respect to the vector fields. A

more precise statement is needed and certainly is nontrivial.

Let us end this section by pointing out that in some cases the semigroups

Th(t) do not conditionally approximate T(t) on any open set V C X. In this case,

one has to use other ways to prove that Th(t) admits a local compact attractor Ah

for h small enough. In section 7.2 we shall encounter a typical example of this

case.

t-h
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3. Approximation of Sectorial Evolutionary Equations with Special Projection

Methods.

Let A be a sectorial (linear) operator on a Banach space X. We recall that A

is sectorial if and only if the semigroup e generated by A is an analytic

semigroup; and if A is a sectorial operator on X with Reo(A), where o(A) denotes

the spectrum of A, then, for any c > 0, one can define the operators A-a and Ac .

Moreover, if Rea(A) > I > 0, for any a ; 0, there exists a constant c2 < +- such

that

JjIA'jtIL(xx€) 4 Cct'e " 't , t > O.

If A is a sectorial ooperator on X, then there is a real number a > 0 such that A,

= A + al satisfies Reo(A,) > 0. If we define Xc f f D(A0'), a ) 0, with the graph

norm I jxj I Mi I JANxItx, x E Xa, then X' is a Banach space normed by i x

(for more details, see [Henry, p. 26-29]).

Now we consider the nonlinear equation

dR + Au = f(u),
Sdt

(3.1)

u(0) = uo,

where there exists a real number a e [0,11 such that f: X" -. X is locally Lipschitz

continuous (i.e. f is continuous and, for any bounded set U in Xa, there is a

constant ku such that, I If(u) - f(v)l Ix ( kul Iu - vi w for u,v in V).

A solution of (3.1) on [0,T) is a continuous function u: [0,T) - X a , u(O) =u o

which satisfies the relation

.5 Srt

II

(3.2) u(t) e -.Atu0 + e - A. t. ) f ( u ( s ) ) d s ,  0 .t < T.

d . . . . . . . . . . . .- .. . . . - - . . . ,i,- . ..-. +. .. . .- < ,-.. , .. . -.. -- .. . . .-.- .+ . ,- .. . +. . . . . .-. -., .. = . . .-.. .. . . - .,.-, -,- . .- ,- ,- ,- ..O
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One can prove (see [Henry, p. 54-57, 62-65]) that, under the above hypotheses on A,

f, there is a unique solution of (3.1) on a maximal interval of existence [0,TU o). If,

in addition, f is a Cr-function in u, the solution u(t,uo) is a Cr-function in (t,u o )

on [O,T ).
p,, 0

Here we assume that all solutions are defined for t ) 0 so that we can

introduce the map T(t) ; X c - Xc, t ; 0, defined by T(t)u o M u(t,u o) and obtain a

Cr-seimgroup on X with r 0 (we also suppose that T(t) has a local compact

attractor A which attracts an open set 0 D A (see [Hale 31 for the existence of A).

Remark 3.1. We may always assume that Reo(A) > X > 0. Indeed, as A is a

sectorial operator, there exists a positive number a such that, if A= A + al,

Reo(A1 ) > X > 0. Then we replace equation (3.1) by

du + A u _ f(u) + aI
dt

(3.1)

u(O) =u0

Therefore, we suppose in the sequel that Reo(A) > X > 0. We assume also that

o(A) consists of isolated points Xn only with no accumulation in the finite part of

C (i.e. - is the only possible accumulation point) and that each Xn is of finite

order. We order the points Xn in such a way that

X, < ReX, 4 ReX,2  4 .. Rek n  R cn+1  < ..

where Re)r n -. +w as n -+

We denote by On the generalized eigenspace corresponding to Xn, by PN the

projection from X onto the space [O,'A2 .... 4N and by QN the projection 1 - PNg. We

assume that, for 0 ( 0 < 1, 1 IPNI ILxx is bounded by a constant K13 > 0,

uniformly with respect to N. By [Henry, p.21], for any F > 0, for any integer N,

there exists a constant KEN such that

.. ,

C,

L; .. .
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-(ReXN+I- -)t

(3.3) IIAJ e-AtQNIIL(x, X) K c N; for j 0,1;

Below, we assume that, for 0 0 < 1,

Ke. N
(3.4) Irm (Re X -E) 0

N-+(

this condition being usually satisfied.

Now let us consider the following equation on XN = PNX:

iuN + AuN = PNf(UN),. (3.5)N d

SUN(O) = UON,

where UN C X N* Equation (3 .5 )N is an ordinary differential equation. Let us

introduce the map TN(t) : XN -. XN, defined by TN(t)UON = UN(t,UON), as long as

uN(tUON) exists. TN(t)UON is continuous in t and UON, when it is well defined and,

if TN(t)UON exists on [to,t1), it is left-continuous at t,.

Theorem 3.1. Under the above hypotheses, there exists a number No > 0 such that, for

N ), No, TN(t) admits a local compcat attractor AN which attracts an open set N1 r)

XN, where N1 is independent of N. Moreover, Sx(AN,A) - 0 as N - +**

Proof. Clearly, Theorem 3.1 is proven, thanks to Corollary 2.5 and Proposition2.2,

if we show that there are constants 60 > 0, N o > 0, and three open neighborhoods

N1, N2, N. of A such that N1 C N2 C N(N 2,60) C N3, N1 C 0, and

0(i) T(t)N1 C N2 for t ?, 0,

(ii) for N 0 N o, for any ti > 0, if T(t)uON and TN(t)UoN belong to N3 for 0

t T, with T t, then, for 0 t (T,
' 1'

.. . ,, ...- .. . .. .-. " .. . "*." ." "*', "" "" "." '*:" .'. .;.1 .'. .. . **-," ."' *"- .",' ',; ' C
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(3.6) 1 ITN(tu 0 N - TMtUONI ya 4 ?(N,[O,t11,N3)

* with

(3.7) lrn '1(N,fO,t,N 3) = 0.

As A is a compact attractor, there are two open neighborhoods N1 ,N2 of A such

that (i) holds and N, C 0. Let So, be a positive real number and set N3 = N(N 2, 50 ).

As f is locally Lipschitz continuous, there exist two constants Mi> 0 and L > 0

such that

(3.8) V u, v G N(N 3 160 ), I1f(u) - f(v)IX 4 LI~u-vI W

* and

(3.9) V v GN(NB 0O), IIf(V)IIX 4 M1.

Now it remains to prove the property (ii); to this end, we assume that u(t)=

T(t)uoN and uN(t) - TN(t)uoN belong to N3. At first, we compore u(t) with its

projection UNMt = PNu(t). As P.and A commute, we have:

UN(t) = e-t uON + J -~ At Nf (u(s))ds,

and therefore, by (3.2),

g.t

u (t) - B N() 0 e-A(t5s)QNf (u(s)) ds.
0o

Using (3.3) and [Henry, Theorem 1.4.3, page 26], we get

I leMA QNI I(., K C,N e (.+-Et

and therefore, thanks to (3.9), we have



-18-

I IuMt - UN~(t)1 ag ( MlKNr(a) Jo aae (RN+l-)o do

or

(3.1) Iu~t - N(t)I~x (Re X N+l 1~

Therefore

(3.1) 1 u~) -9 ~tI xC EN

where eN does not depend on t and lrn EN - 0. Hence, for N )NO, UN(t) C

N(N3 ,60) as soon as u(t) C N3.

Now we compare uN(t) with iiN(t). We have:

Jt
UN(t) - UN(t) e At5(Nf(UN(S)) - PNf(U(s)))ds

0o

and hence

+ I If (UN(S)) - f (UN(S))l IX)

or also, by (3.8),

11UN(t) - UN(t)l I ax K LC F (tO'ceA'(ts$)j(IS) ZN.(S)J x + EN)ds.

Let US Set: W(t) =(iiN(t)- UN(t))e~t . Then we get

(3.12) 1I1w()I I xu ( K OL C a f (t-s)-ae XS CENds

+ K OLCe.f (t-sY-aI w(s) Ix ds
0

Using a more general form of Gronwall's lemma (see (Henry, page 6]), we deducc

from (3.12) that

...................................................7-
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*(3.13) llw(t)iIM ( ( NKOLCaext M(t1 )

where M(tl) is independent of N and is an increasing function of t,. From (3.13).

we derive:

(3.14) IIUN(t) - UN(t)IIa 4 C M(t1I)

where M(t1 > 0 is independent on N and is an increasing function of t j. The

estimates (3.11) and (3.14) give us the conditions (3.6) and (3.7).
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4. Galerkin Approximation of Some Parabolic Equations

4.1. A general result

Let V and H be two (real) Hilbert spaces such that V is included in H with a

continuous and dense imbedding; the space H is identified with its dual space, and

the inner product of H, as well as the duality pairing between V and its dual

space V' is denoted by (.,.) (so we have the inclusions V C H C V' where the

imbeddings are continuous and dense). We introduce a continuous, bilinear form

on V x V : (u,v) C V x V - a(u,v) and the corresponding operator A G L(V;V')

defined by

V u, v G V, a(u,v) = (Au,v).

We denote by CO the constant of continuity of the bilinear form a(-,-). We also

suppose that there are two constants " > 0 and 'yo > 0 such that

(4.1) V v G V, a(v,v) + 7/jIvi ' ;0 7lIvII'

Moreover, if

b(u,v) = a(u,v) - a(v,u),

we assume that there exists a constant C1 > 0 such that

(4.2) Ib(uv)l C1 lul I I vl IH-

Now we consider the nonlinear equation

du + Au = f(u),dt
(4.3)

u(0) = uo,

where f V -. H is locally Lipschitz continuous and uoGV.

.

...°o..
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If D(A) = tv E V;Av G H), then D(A) is dense in V and in H, and A is a sectorial

operator on H so that we can define the operators A', 0 (c ( 1. If

, (4.4) D(A /2 ) = D(A*1 /2) _ V,

where A* is the adjoint operator of A, defined by

Vu, v e V, (A*u,v) - a(v,u),

we are in the frame given in Section 3; therefore, if we assume that all solutions

are defined for t ) 0, we can introduce the map T(t) : V - V, t ? 0, defined by

T(t)u o = u(t,u o) and obtain a C-semigroup on V. [Here we also assume that T(t)

has a local compact attractor A which attreacts a bounded open set 0, 0 D A.

Remark 4.1: We may always assume that y0 . 0. If -yo 0, we can set A,=

A + 7o1 and replace equation (4.4) by

I-1 + A u - f(u) + 7ou
dt(4.3)' d

u(O) = uo.

Therefore we assume in the sequel that 7o = 0.

Remark 4.2: Condition (4.2) is satisfied if, for instance D(A) D(A*), which is

true, in particular, if A is an elliptic differential operator, with Dirichlet

boundary conditions, the data being sufficiently regular (see [Lions] or [Kato]).

Now let us turn turn to a finite-dimensional approximation of equation (4.3).

Let h > 0 be a real parameter which will tend to 0 and (Vh)h a family of

finite-dimensional subspaces of V. We introduce the operator Ah E L(Vh;Vh)

defined by

I..
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(4.5 V vh EV h, (Ahwh~vh) - a(wh~vh) for Wh in V h'

U'Let Qh E L(H;Vh) be the projector on Yb in the space H, i.e.

Vv GH, Vvh G V h, (V-Qhv-Vh) - 01

and let Ph G L(V;Vh) be the projector on Yb in the space V, i.e.

Vv Vv, VvhVb h9Y a(v-Phv,vh) =0.

Now let us consider the following equation in Yb:

( 4 *3)h (uh~O + Ahuh Qhf (Uh),

=hO Uob

where uoh C Xh* Equation (4 .3 )h is an ordinary differential equation. Let us

introduce the map Th(t) :Vh Vh, defined by Th(t)uoh =uh(t,U~h) as long as

Uh(t,U~h) exists. Th(t)Uoh is continuous in t and Uhwhen it is well defined and, if

Th(t)Uoh exists on [t0,t1 ), it is left-continuous at t,.

In order to poethat T,(t) also admits a compact attractor A. for h small

enough, we need the following additional hypotheses on the spaces (Vh)h:

-there exists a constant m > 0 and, for any 8, 1/2 4 13~ 1, a constant C(S) >

0 such that, for all w in DA)

(4.6)(i) I 1w -PhwI IV + I1 -W QhwllIV C(83)h 2m(13-1/2)1 IWI X

and

(4.6)(ii) 11w - hwIIH + I1 -W QwI C()h'm~wI~

where X = D(A13) and D(A) ( v Ez V :Av EH)
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The hypotheses (4.6)(i) and (4.6)(ii) are realistic and are satisfied in many cases,

when A is an elliptic differential operator [Ciarlet] and also the example 4.1

below.

Example 4.1. Let (I be a regular bounded domain on a convex bounded set in R2.

In (I we are given an elliptic operator of the following form:

2 a 2  2

(4.7) Lv = E aij(x) xvx+ E b.(x) 1L + C(X)v
i ~ ~ &8xi, j=1 j Ox.

where the coefficients ai1, b, c are smooth enough and where L is assumed to be

uniformly and strongly elliptic. If A denotes the operator -L, with homogeneous

Dirichlet boundary conditions, then the hypotheses (4.1),(4.2) and (4.4) are satisfied

with D(A) = H2(fl) () HI(fn), D(A 1/ 2 ) . V = HI( fl), H = L2(fl). And one can find

finite dimensional subspaces Vh of H1(fn) such that the conditions (4.5)(i), (4.6)(ii)

are satisfied with m = 1. For instance, if i0 is a convex polygonal domain, we

introduce a uniformly regular family (Th)h of triangulations in the sense of

[Ciarlet] where Th is made of traingles with diameters bounded by h. And we set:

(4.8) Vh= {vh G C(n) O HIn) :V K E Th Vh/k C k

where P1(k) is the space of all polynomials of degree 4 1 on K. In this case, the

hypotheses (4.6)(i) and (4.6(ii) are satisfeid with m = 1 Moreover, even if the

family (Th) h is only regular, the hypothesis (4.6)(ii) is satisfied and the condition

(4.6)(i) usually holds (see [Crouzeix-Thomee]).

Theorem 4.1. Under the above hypotheses, there exists ho > 0 such that, for h <,

ho, Th(t) admits a local compact attractor Ah, which attracts an open set N1 nl

where N 1 is independent of h. Moreover, Sv(AhA) "€ 0 as h 0.
1
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Proof. We shall prove that the hypotheses of Proposition 2.2 are satisfied by T(t)

and Th(t) for h small enough. Clearly, it is sufficient to show that there are

constants ho > 0, 60 > 0 and to > 0 and three open neighborhoods N1,N 2, N3, of I

with N1 CO, N CN 2 C N(N 2,6o) C N3 , such that the conditions (i) and (ii) of

Proposition 2.2 are satisfied and that Th(t) conditionally approximates T(t) on N3

uniformly on compact sets of [t,,+-). Let us prove it in three steps.

First step. As A is a compact attractor, there is a bounded open neighborhood N,

of A such that N1 CO and T(t)N1 C N1, for t ) 0. We choose a real number Eo
8B0 C- where B = maxlvj and we set: N2 = N(NIE 0). Finally, let 60 be a

vN 1

positive real number and define N3 = N(N 2,60 ). Now we want to prove that there

exists a constant to > 0 such that Th(t)(Nl r Xh) C N2 for 0 4 t 4 to. Using

classical arguments of the theory of differential equations, we easily see that it is

sufficient to prove the following property:

[there exists a constant to > 0 independent of h such that, for any

(A) UOhE NI n Vh, if Th(t)Uoh belongs to N(uoh,'o+6o) for 0 ( t ' t(Uoh),

where t(uoh) 4 to, then Th(t)Uoh E N(Uoh,EO) for 0 4 t t(Uoh).

As f is globally Lipschitz continuous on N(N3,60), there exist constants M > 0 and

L > 0 such that

(4.9)(i) Vv C N(Ns,6o) , I If(v)lI IH M 1,

and

(4.9)(ii) Yv,w G N(N 3 ,60 ), I If(v) " f(w)[IH LI Iv- wl v.

If uh is the solution of Equation (4 .3)h, uh - Uoh satisfies the equation

(4.10) dt(Uh - Uoh) + Ah(Uh - Uoh) = Qhf(Uh) + AhUoh.
dt

Taking the inner product in H of the equation (4.10) by dUh - uch), we obtain:

dt 

o
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(4.11) IId(Uh " Uoh)IlH + a(uh - Uoh, dt (Uh Uoh))

=(f(uh), -uh " Uoh)) + dt a(uhuh - uh)

But

(4.12) a(uh - Uoh, d (Uh - Uoh)) fi ta(uh - UohUh - Uoh)

+ 12 b(uh- Uoh, d t(Uh - Uoh)),

so that we deduce from (4.11) and (4.12), by using the inequality (4.2), that

101~ (uh - Uoh)I h ~ UohUh - Uo) 4 dt - u hI{
ct H 2 dth oh

+ CII IUh - UohIVI I dt (Uh - Uoh)l IH
dt

+ dta(uohUh - Uoh),4dt

which implies that

(4.13) 0- a(uh - UohUh UOh) M + C-IJuh - Uoh 112
dt V

dt a(ohUh - Uoh).

Finally, integrating (4.13) from 0 to th and using (4.1) (with 'y f 0) and the

2E 2
inequality ab 4 a2 +2Lbw ban

2t M2 2 t 4C1o
SIIUh(th) - Uoh[II ~ + ~ Jth huh(S) - U ohII ds + -II'bh '

Thanks to Gronwall's inequality, we derive from the above estimate that

2

(4.14) h uh(th) - UohhI jh + "2 1
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If Uoh C N I nVh, (4.14) becomes
2

c2

(4.15)~~~ Iuh(th) - UohIIl .~ +. ~e~

From (4.15), it is clear that there exists a constant t0 > 0 independent of h such

that Property (A) holds.

It remains to prove that Th(t) conditionally approximates T(t) on N.

uniformly on compact sets of [tt,+-). To this end, we begin by an estimate of

IITh(t)uoh - T( t)UhH.

Step 2. Estimate of I ITh(t)uoh - T( t)uOhI 1H for 0 4 t 4 t,, when Th(T)uoh and

T(T)uOh belong to N3 for 0 4 T 4 t. We set u(t) = T(t)u ohand u -~) Th(tuh e

us remark that

(4.16) I ITh(t)Uoh - T(tOhI 'H ( I Iu(t) - Qhu(t)I 'H + I IQhu(t) - Uh(t)IIH

Thanks to the hypothesis (4.6)(ii), we have

(4.17) II4)-Qh~)I C(iL)hn1 u(t)Ilv

and it remains to estimate I IQhu(t) - Uh(t)I 1H. The function Qhu -uh satisfies the

equation

dt(Qhu - uh) + Ah(Qhu - Uh) = Qhf(u) - Qhf(uh) + (AhQh - QhA)u

(4.18) (Qhu - Uh)(O) = 0

Taking the inner product in H of (4.18) by Qhu - Uhl we obtain

(4.19) 2 dt I Uh -QhU1HI + a(uh - Qhuluh - Qhu)

=(f (u) - f (uh),uh -Qhu) + a(u -Qhu, uh Qhu)

which implies the inequality
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2 f uh QhuIIH + 7IIUh - QhUll ( jj QhUlI uV I- Qh Ul

+ LIjuh - QhUI)vJ)Uh " QhuJIH

+ COIu - QhU0 lllUh QhUllv

From the above estimate, we infer (after an integration from 0 to t):

IIUh(t) - Qhu(t)ll ' L2 + 1 Ius)- QhU(S)ll ds

+ [L2 + 4] Jllu(S) -QhU(S)112ds.

7 ) 0

Using Gronwall's lemma, we finally obtain

(4.20) I Juh(t) - QhU(t)I 'H 4 CCt ~I Jus OsI12 ds]

where c and c* are two positive constants independent of h. Due to the

hypothesis (4.6)(i), we have:

(4.21) jU(S) - QhU(S)l ,ds 1/2 C(4. hm ,IAu(s),I, ds] 1/2

o 1

Since d--(s) belongs to H for s > 0, we may consider the inner product in H
ds

of Equation (4.3) by du ; then we get, by using a relation similar to (4.12):
ds

11 1 a(u,u) I Ilf(" flH ldp' IH +
dt 2 2dt dt 2 dtH

and also I'o I f U I1 I II12d
(4.22) J i 1 ds 4 2 f If(u)li ds + 2CJ I lullds + cqIu(t)II2

0 0
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Since Au - f(u) - we deduce from (4.22) that there exists a constant
dt

co(N 2,6 0 ) > 0, depending on N2 and 5o only such that

(4.23) JIIAuI1 ds ( co(N 2 ,6o)(I + t1 ).

Finally, we derive from (4.16), (4.17), (4.20) amd (4.23) that, for 0 ( t tj,

(4.24) IHu(t) - Uh(t)I 'H 4 C1(N2,6o)(l+tl)e Ihm,

where C,(N2 ,6 o) is a positive constant depending on N2 and 60 only.

Step 3. Estimate of I ITh(t)uoh " T(t)UohlIV fo.r to ( t ( tj, when Th"(T)Uoh and

T(T)Uoh belona to N 3 for 0 4 T t.

To this end we at first estimate the term I ITTh(T)Uoh - TT(T)Uohllv for 0 ,

T 4 t. Let us set Z(T) = Tu(T). As QhA = AhPh, the function PhZ(T) = TPhU(T)

satisfies the equation

dt hZ + AhPhZ = TQhf(U) + T(d (Phu - QhU)) + Phu

Hence, Zh(T) - PhZ(T) satisfies the equation

(4.25) d~t(Zh- PhZ) + Ah(Zh - PhZ) = TQh(f(Uh) - f(u))

+ T(dt(Qhu - Phu))

+ Uh - Phu

Taking the inner product in H of (4.25) by d (Zh " PhZ), we obtain:

(4.26) I d(Zh-PhZ) 'H + a(Zh-PhZ dt (Zh'PhZ)) ( L, IZh-ZI IvI 11 (Zh.PhZ)IIH

dt dt dt

+ II (Z-P(ZhPhZ)H
+ I d PhZ)IIHII!I (ZhPhZ)IH

+ I lUh "PhUl IHI1!1 (Zh-PhZ)l IH
dt
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Using the relation (4.12) (where uh - Uoh is replaced by Zh PhZ) and the

hypothesis (4.2) as well as the inequality ab ( 1 a2 + 1 b2 , we derive from
2c 2

(4.26):

(4.27) ta(Zh - PhZZh - PhZ) ( (L 2 + C2)IIZh hZIIV

+ L2IIZ - PhZII?, + IIh (Z - PhZ)h"h

dd

+ [[Uh - PhU + Zp 1

If we integrate (4.27) from 0 to t and then apply Gronwall's inequality, we get:

(,/7y)(L2+Cl)t 1f 2

(4.28) IlZh(t) - PhZ(t)I, 1 E IZ(o) - PhZ(O) V

I yhUh(O) - Phu(a)hjlff- a H PhZHo)d do].
- dt

Thanks to the hypothesis (4.6) and to the estimates (4.23) and (4.24), the inequality

(4.28) implies, for 0 4 t 4 tl,

(4.29) 1IZh(t)" PhZ(t)II ) C(NBo)eClhzmfI + t + J tldZ(o)[,Idov ,

0 d

where C2(N 2,6 0 ) is a positive constant depending on N2 and ro only and Z is a

positive constant. But, using [Henry, page 71], one easily proves that there are

two constants K o > 0 and K1 (N2,6 0 ) > 0 such that, for 0 < T t,

(4.30) dI T)llv 4 K7(N2,5o)e 0 1

Since TAU = Tf(u) - T du we infer from (4.30), for 0 < T 4 t,
dt

(4.31) IITAuIIH ( ts ISf(v)IH + K 1 (N 2 ,6o)e 0

Finally the estimates (4.24), (4.29), (4.30) and (4.31) together with the hypothesis
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(4.6)(i) allow us to write:

I IZ(t) - Zh(t)lIv K 2(N,6 0 )e h

and also, for to t t

k3 t1

(4.32) iu(t) - Uh(t)IV ( K2 (N2 o60> Ceto h m
to

Remark 4.3: We also could have used the methods of [Fujita and Mizutani]

for estimating I IZh(S) - PhZ(S)l IV. For the estimate of I Ju(t) - uh(t)l I, when u is

more regular, we refer the reader to [Thomee and Wahlbin] and to [Thom~e].

Remark 4.4. Let fl be a regular or convex, bounded domain in R n, n = 1,2,3, and

let f : R -. R be a locally Lipschitz continuous function. Then, if n = 1, the

mapping f : u E H1(fl) -. f(u(x)) G L2(fl) is also locally Lipschitz continuous. If, in

tt.- cases n = 2 or 3, f satisfies the additional condition

(4.33) Vv, Vw C R, If(v) - f(w)l 4 C(I + IvI + IwI)qv - wl

where

2 for n ) 3, o arbitrary for n =2,n -2

then, the mapping f : u G H1(fl) -, f(u) E L2(fl) is also locally Lipschitz continuous.

If the condition (4.33) is not satisfied, we have in general to work in another

space than Hl(f)) (see Section 4.2 and Example 4.2 below).

4.2. An extension of the previous result.

Let us again consider the operator A, introduced in the section 4.1, that

satisfies the properties (4.1), (4.2), (4.4). Now we assume that f : V - H is no

longer Lipschitz continuous. But instead, we suppose that A is a sectorial

operator on a Banach space Y C H and that f : Y is locally Lipschitz

bI

i-1
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continuous, for a real number , 1 4 a < 1. Furthermore, we assume that the
2

following continuous inclusions hold:

* (4.34) Dy(A) 4 Ya4 VCY C H

where Dy(A) = (y G Y: Ay E Y) and Yc = Dy(Aa).

We assume that all the solutions u(t,uo) of (4.3) are defined and belong to Y'

for t ) 0, if u C Yo. Thus, the map Ty(t) : Ya_ -y t 0 0, defined by Ty(t)u o

u(t,uo), becomes a C°-semigroup on Yo. Finally we suppose that Ty(t) admits a

compact attractor A which attracts a bounded open set 0 D A. Then there exists an

open neighborhood N1 of A such that N1 C 0 and Ty(t)N1 C N1, for t ) 0.

Now we introduce a function f which is Ploballv Lipschitz continuous from

V into H, coincides with f on 0, and we consider the equation

f d + AU =
(4.35) d

,- U(0) = uo .

4.
Obviously, if uo C NJqU~~ = u(t,u0 ) for t ) 0. Let (Vh)h be the family of

finite-dimensional subspaces of V introduced in Section 4.1. We suppose that the

spaces Vh are included in Yc, satisfy the conditions (4.6) and the two following

assumptions

(4.36)(i) for any 0, a < 0 1, there exists a constant 9(a,1) > 0, such that, for v

in Y1,

I Iv - PhVIIa 4 Ch2me(a's)llvlI IY,

and

(4.36)(ii) there exists a constant e , 0 < ec < 1 , such that, for any vh in Vh,

-. -, , .. s ,r- ,.",, ,-r , ".- _-'."''," "- .'4 • . . . - , -.-.... .:' -"',,. - .-,.- -'.--,-' .,-- . --..-....2

%I
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I IhI YX (Ch-2 me i6 lI

We consider the approximate problem

(4.37 )h ... A~d

iUh(o) = Uh

for uoh G V h. We introduce the map TO~) :Vh V1, given by Th(t)uoh = h(t,Uoh).

Since f is globally Lipschitz continuous, Th(tkuh exists for any t ) 0.

Theorem 4.2. Under the above hypotheses. there exists ho > 0 such that, for h

h0  h(t) admits a compact attractor Ah whc trcsteoe e 1 f h

(where N1 is given above). Moreover, 6 Y o(Ah,A) -0 as h -~ 0.

Proof. Let to > 0 be a f ixed real number. For any t, > to, we are going to

estimate IITY(t)U~h - Th(t)Uoh I . fo to(t(twe oh ERVWeset u(t)=

TY(t)uah, Uh(t) = Th(t)u~h. Recall that u(t) = i(t). Due to the conditions

(4.36), we have:

HjUMt Uh4t11Ia 4119(t) -PhiEt0tl.Yu + lIPhff(t) - 90~)11 a

4 Ch 2m (a.,.)IIU(t)II + Ch OlIPhii(t) -Uh(t)II

where a < 13 < 1

Arguing as in Section 4.1 (see Estimate (4.32)), we get:

h -2melIPhii(t) - Uh(t)IIV 4 K2(N) tc- h 2(1
to

Finally, by using [Henry, page 57], we deduce from the above estimates, for to

4 t 4 (
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(4.38) Ilu(t) - ah(t)lt y K 4( 0,N 1) e sup(h2 1/2- 6 a h2mG(a.0 ))to

Since G. < 2 (4.38) implies that the hypotheses of Proposition 1.1 hold and
2'

Theorem 4.2 is proven.

Example 4.2. Consider the equation

U = u =(u),
Sdt

(4.39) u / )/ = 0,
u(t)/t=o- =uo

where, for instance, fl is a convex polygonal domain in R 2. If the function f

R -- R is locally Lipschitz continuous, but does not satisfy the condition (4.33),

we cannot work in the space V ; H'(fl). The map f :w C Y f(w)E Y is

locally Lipschitz continuous if Y L2(f) and a or, if Y LP((), p > 2
2'

and a ) . (Indeed in both cases, Y C4 L**(n)).
2

Now assume that (4.39) admits an attractor A in Y' which attracts a

bounded set 0 D A. So we can introduce the quantity

(4.39) B0 = max vLC).
vO

One easily constructs a function f satisfying

f (x) for lxi 1 ,1

(4.40) f(x) )

0 for lxi ) 2B1

The map f w E V -, f(w) E H is globally Lipschitz continuous and coincides

with f on 0.

" , " o .- . - - o . . . . .

~~~~~~~~~. . .. . . ,. ,=,t , 3._,, - -" . ... .- . - .. . .... , . ,- . .... . . .. ..-. , .-. ..
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Let us give an example of spaces Vh in the case Ya - H2a(fl) n H'(Q),

"< c < I. Let (Th)h be a uniformly regular family of triangulations in the
2
sense of [Ciarleti. We set:

Vh - (vh G Cl(fl) r) Ho(fn) : Vh K e P3 (K), VK E Th)

where P3 (K) is the space of all polynomials of degree 4 3 on K. Then, of

course, the hypotheses (4.6) are satisfied with m = 1. Condition (4.36)(i) and

(4.36)(ii) hold with e(c S) ; 0- a and e. -2

S.2

. . . . . . . . . . . . . . . . . .
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5. Semi-discretization in Time of Some Parabolic Problems.

We keep the same notations and the same assumptions as in Section 4.1, but

here we moreover assume that the operator A is self-adioint and has a comp~act

resolvent. (The generalization of the following results to the case where A is

not self-adjoint, but satisfies the conditions (4.2) and (4.4) is left to the reader). As

in Section 4.1, we assume that 70 = 0 and we consider the nonlinear equation:

du + Au = f(u),
I dt(5.1) 1uO

".~ (0) = u °

where u° G V and f E C2 (V;H), for instance. The hypotheses on f can be

weakened. Now let us turn to a semi-discretization in time of Equation (5.1) by a

single step method. More precisely, let k be a positive time increment, let t n = nk,

n > 0, and define an approximation un of the solution u of (5.1) at the time tn by

the recursion formula

.Un+1 =(I (Il-)kA)(l + OkA)'lun + k(l + ekA)-If(un )

where 1 < 0 4 1.2

Remark 5.1. The results that we are going to prove below are also valid if we

replace f(un) in (5 .1)k by f(0Un+1 + (l-e)un). But then the "linearized" scheme ( 5.)k

becomes a nonlinear one.

More generally the following results are also true if we replace ( 5.1 )k by a

scheme that is strictly accurate of order 1 in the sense of [Brenner, Crouzeix,

Thom~e] and is of the form:

-7. . . . ....



-........... I - --NkJ- -V9rV jFJ- jF-- -P -. 9- Y-XW
-36-

Un+ 1 : i r(kA)u n + k E qj(kA)f(Un),
(52)kjl

U0 =f U0 ,

where r, q,,...,.. are rational functions of the variable z which are bounded,

as well as zqt(z), 1 4 j 4 m, for z ' 0, and where Ir(z)l < 1, for z i 0, and

Ir(w)l * 1. The proof, in the case of the schemes (5 .2 )k' uses the same

arguments as below and the property that r(z) can be written as 1 - zs(z)
I + oz

where a is an adequate positive constant (for more details, see [Raugel]).
Now we introduce the mapping Tk C L(V,V) defined by Tku 0 f u I where u1

is given by the formula ( 5 .1)k. For any integer n ) 1, Tnu ° f un. Let us remark

that Tk is well defined on the whole space V and that TI : N - C°(V,V) is a

discrete semigroup. Although the sections 1 and 2 deal with Co-semigroups T(t)

R + - C0 (V;V) only, the definitions and the results contained there obviously

extend to the discrete semigroups. For instance, a set B C V is said to attract a set

C C V under Tk if, for any E > 0, there is an integer no = no(B,C,E) such that Tk C

N(B,e) for n A no (the definitions of a local attractor and an attractor are

unchanged, for more details, see [Hale, 1], for instance).

Here we suppose that the map T(t) : V - V, t ; 0, defined by T(t)u° = u(t)

where u(t) is the solution of (5.1), admits a local compact attractor A which attracts

a bounded open set 0, 0 D A.

Theorem 5.1. Under the above hypotheses, there exists ko > 0, such that, for k <,

ko, Tn admits a local compact attractor Ak, which attracts an open set N1 where

N1 is independent of k, N1 D Ak for every k. Moreover 6v(Ak,A) - 0 as k 0.

The remainder of this section will be devoted to the proof of Theorem 5.1. But,

beforehand, let us recall the following discrete analogue of Gronwall's lemma, the

2 tA ?, Lr.~e ~ .- -. . . . . .
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proof of which is left to the reader.

Lemma 5.2. Let (an) n, (bn)n, (cn)n be three sequences of positive real numbers

such that (cn)n is monotonically increasing and

n-1

(5.3) an +b n (c n + )E am for n land X>O,
m=O

with

ao + bo ( co .

Then, these sequences also satisfy

(5.4) an + bn ( cn exp(xn) for n ) O.

Only for the sake of simplicity, we consider that the space V is equipped with

the norm:

"(5.5) Vv E V, I lvllIV = (Av,v)1/2.

Hence the dual norm on V1 is given by

Vv'E V', IIv'IIv = (A'Ivl,v')1/2

Proof of Theorem 5.1. In order to prove Theorem 5.1 we shall apply the

following modified version of Theorem 2.4, the proof of which is left to the

reader. Clearly the conclusions of Theorem 2.4 and hence of Theorem 5.1 hold,

if the following conditions are satisfied:

There exist four positive constants ko, 60, 61, %, with ob > ko, and two open

neighborhoods N1, N2, of A, with N1 C N, such that, for 0 < k ( k

(i) Tk is an asymptotically smooth map (this condition holds in

particular, if Tk = Tlk + T2k, where Tik is completely continuous and

t2k is a linear strict contraction);

'.

4.'

I! . . . . - . . • . . .• o - , - . . o . o . . . o o . o o
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(ii) T(t)N1 C N 2 for t ) 0,

(iii) T-N 1 C N2  for 0 t n 4_ok

(iv) TkN(N 2,5o) C N. where N. = N(N 2', + 61);

and

(v) for any a, > q, there exists a constant ko(a1,Ns) with 0 < ko(a=,N s) <

ko, and a function n(k,a,,N3) defined for 0 < k 4 ko(a,N.) such that

(5.6) lir Y(k, 1 ,N3)= 0,

and, for any 0 < k ( k0(-,N 3), if u0 G N3 has the property that Tku ° and

T(nk)uo belong to N. for 0 4 n 4-1 and 0 ( nk 4 a2 + ko respectively
k

(where a% ( a 1 ), then

(5.7) IIT U° - T(nk)uP1v 4 7?(k,a,,Ns) for 20 4 n 40(2

k k

Now let us show in four steps that the above conditions are satisfied.

1) By (5.1)., we can write, for any u° E V,

Tku ° = [(l+BkA)-'u ° + k(l+OkA)If(u°)] - (l-0)kA(l+ekA) 1 u0

k
u o + T2ku

°

Let B be a bounded set in H; for any v E B, we have I IkA(l+0kA)-Iv[ H 4

* IIVIH. Hence, for any fixed positive k, (I+0kA)'B is a bounded set in

D(A). Since D(A) C V is a compact embedding, this proves that Tik is

completely continuous. On the other hand, as A is an elliptic operator,

T2 k, for k > 0, is a linear strict contraction as soon as 2e - I > 0.

Condition (i) is proved.

2) As A is a compact attractor, there is a bounded open neighborhood N, of A

such that N 1 C O and T(t)N1 C Np for t 0. Let B. = max I IvI IV andi ,CE N 1

B1 = max I If(v)I IH; we set o = 4(Bo2 + B1) 1/ 2 and N2 = N(N1 ,Eo). Finally, we
yEN1

MIA
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choose a real number 60 > 0 and we set = + Eo + )2 + 2

where B 2 = max I If(v)lIH.
vEN(N2 ', 0 )

Let us remark that the condition (iii) is an immediate consequence of the

following property:

there exists a constant ao > 0 independent of k, such that, for

any u° e N1, if T'u ° belongs to N(u°,Eo), for 0 4 n 4 B(k,u°)/k,
(A)

with 0 41 3(k,u °) 4 ao - k, then T' u° belongs to N(u°,Eo) for

0 4 n ( 0(k,u°)/k + 1.

Let u°  N. We set un = T' u
°, n = Un "u and we assume that, for 0 4 n

4 13(k,u°)/k, Tn u0 E N(u°,Eo). By (5 . 1)k , we have

(5.8) Un - Un-1 + kA(8Iun + (l-')Un-1) - kf(un-1) - kAu 0 "

Taking the inner product in H of (5.8) by Un - un-i1 we obtain

n -1 H nI. R - IIn1IV + k (20-I)JIti - U-1II V

4 k(f(un-1) " f(u°)'Un" n-)

+ k(f(u°),in - in-l) + k(Au 0,i n -n) ,

or also,
IIn2 lan- 112( k LV21 + kB1 + (Au 0 ,in Un-1),

where L > 0 is the Lipschitz constant of f on P3 .

Summation over n yields:

m

(5.9) IIUm+r 111 4 kL 2 E II 2llI, + k(m+l)B2 + IIu0IIVAim+IIv
n=O

• .
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where m is the integral part of 0(k,u0 )/k. Using lemma 5.2, we infer from

(5.9),

(5.10) 1 iim+tI112 [B 2 + + 2k(m+l)B 2]Cxp(2kL 2(M+l)I
v 0

Let now cobe a positive constant such that

* (5.11) [B~ + 2aB2]exp(2L2 %

*and choose ko such that 0 < ko< a. Then one deduces from (5.10) that i+

C N(uo,e0) if m+1 4 qO/k, for 0 < k 4 ko. Thus, Property (A) is shown. As

the proof of the condition (iv) uses similar estimates, it is left to the reader.

3) Some auxiliary estimates.
M m

We shall estimate k E I IT(nk)uo - T nu 12I and E I I(T((n+1)k)uo - Tn+1uO)-
n=O n0O

(T(nk)uo - Tnu0 )I 12 for 0 ( m 4 a1/k, when T kuO and T(nk)uo belong to N3

for 0 4 n 4 m and 0 ( nk 4 mk + ko respectively.

We set tn = nk and cn=-Tk u - T(nk)uo a un - u(t.). As it was pointed

out in [Raugel, proof of Theorem 2.21, one easily shows that

m Zn
(5.12) k E I le.II12 + OkIlem+ 1I?12 - k E e(I-e)IIe,+, - Cn 1

n=O n=O

m
4 k E 11e 1  + (I-)e 12~~

n=O

From the equations (5.1) and (5 .0)k' We infer:

(5.13) en+l - e + kA(Oen~l + (1-O)en) = k(f(un) - f(u(tn))

f J'n+1 [pt~s - at)d
t d

+ ekA(u(tn) -~nl)
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Taking the inner product in H of (5.13) by 0en+ 1 + (1-8)e n + '1(en+l - e.)

where 7y > 0, we obtain the following inequality:

IIo.+.,H ,- -- IelnH' + L(20-,)Ile,+ - e11l + kII e +1 + (I-e)e°,,

+ ~1I~~ ~+k-II1 -/ 1 1  j kv( 6 1  112II

kLIlenIlv[(e+/I)Iln+i e 'IH + I IenIlH

+ 0kllu(tn) - U(tn+i)llv[ I10en+1 + (l-O)enIlv+ 7IlC%+j " enIIv ]

+ n+ -' J'~ ~1s) du ~~(t,))dsII[11e + (i-e)ehv +Y11hle~~ - eI IV].
+ Di [ n + dt,,v,

tn

Using the inequality ab a2 + b2 several times, we derive from the above
2c 2

estimate:

(5.14) Ilen+jO - IIenlI + kIIen+1 + (1-8)enhI2 + 71Il 1e+ - 1

+ k71 lejIn+e1  - k711IenhIV + k/ 1(2o-l)l le,+ - C1I

fk2e2 L2  
1 k2 L2  12 2

1 26-1 2 + k EJ I ICnI V + k L 2 IlenlH

+ k 2 47+ 2* 2 (+ 20-1 1 Iu(t" - U(tn+)1 ds
+(2 + 4 l 2 f n+ 1 id3t (- dRt(tn)I IV.ds

2-1 dt dt nV

where co > 0 is a small enough constant.

Summation of (5.14) over n yields:

m m

IIem+llli + k E 118ee+ 1 + (ln+)eIll + 7 E I1e+ 1  H ehI
n--0 nO

k71i ICm+iII + V -L (28-1) £ jIen+ 1 - enII
2 n=0

S. , ** 
i

"' , . - - ", ' < V % . ° h . .- - - - . ' . . . . . ... . -. • -
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k+ + e"12 + k : i l + 12

n=O CO n=O

+k 2+- 10 E I lu(t n) - u(tn+l)lI ,2e-1 ) n=O

(2 44-+ _ ft+ J ld I-(S) - "(t)I2,, ds

Now we set 220 )
2 = sup(l, 28-1) and we choose k > 0 and co > 0 such that,

2 2 -U2

for 0 < k 4 k0 , + 7k + E < Then, thanks to (5.12), we deduce
20-1 2 2

from the previous inequality that

m m
(5.15) Iem+lI2 + Z II[n]I + E ien+i- ejI

n=O n=O

2mnI

IkSL ' E I lenl12 + C(O)k £ I lu(tn+) - u(tn)l 1,
0 nO n-:O

M tn+ 1 S t , I , d+ c(e) Fld.. (s) -ddtAt ds

n=dt 
dt

d

Due to lemma 5.2 we infer from (5.15):

12 k+ k2m(5.16) Icm+1 IH + I enl1 + Ien+1  - enlII 4 C()exp jL +l) x

n=O n=0

k Z Iu(t,+l) - u(t,)lI,+ IIL(s) - (tn)l I' ds
n=O n=0 t dt dt

Let us set: B3 = max IIvIIv. Then we have:
-EN 3

m 
tm+

(5.17) E Ilu(tn~ 1)- u(t1)II ( 2B2 + k J In I ds
n=0 

t t

.t x '
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By [Henry, page 71], there exist two constants Ko > 0 and K,(N3 ) > 0 such

that, for 0 4 K 4 mk + ko,

(5.18) t 1 I v + t'/' 1 I H 4 K,(N5) ( +k0 )

From (5.17) and (5.18), we derive:

(5.19) k E lIu(tn+)- u(tn)lI , v k(2B + K1(N$)e ° +k)
n=O

On the other hand, we have

(5.20) E (s) -i(t )ll?,ds 4 2k sup i 12.
n0 l d t -dt p d vn=0 tn  tE[0,t]

t 1

Since A" / 2 du A- 1 /2 f(u) - A112u and I1 I = 1A1I/ ' dt -1,w obtain:
dtdt v dt H'w ban

(5.21) slip I I l 12 B2 + max 1If(v)1l1.
0(t~tn-.+lYCN 3

Since the inequalities (4.22) and (5.18) hold, f '(u)tdl + dii belongs to
dt dt

L2([0,tm+];H) and one easily proves that the function td u satisfies the
dt

equation:

(i {(IL(t ",i]) + a(td"L,]- [f'(u)t dyL=,t + [dt=,.] for G CV;

(5.22)

(t d~ 14= 0.

(Hence tdi belongs to the space Hl([O,tm+iI;H).
dt M I;)

o.
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For t > 0, equation (5.22)(i) also can be written as

(5.23) [t dU a+ a  d ',J = (f Iu)td.P 0 for any V.

Let us set 0 = in (5.23); then, after an integration from 0 to tm+1 , we
dt

obtain:

(5.24) 2 tI Idul I. (tm+i) + "y f t I IIIv Jt f'(u)tdj dt

+. Jf$I ft' 112 dt + [Lt I I d 1j23(o).
2 0 H tH

Since

tm+ l  Its+1t M 1 I if , '( d u 12 d t 4i Su p I1f '(U )11 2_  t 1 t I d u  1 1 2 d t,
°0 (t"uEN3 H L(V;H) - dt v

we deduce from (5.24), by using (4.22) and (5.1), that

Jtm+1 du 2 dt K2(N) eKs l a l + kO

(525 t, dt,, lv

K2(N3) and K3 are two positive constants.

Now let us set = u1 d2u in (5.23); we get
dt2

+1 t m I IA- 1/2 d2 U 12d t2(-'

2o 0 tm dt: II H dt+ [tII 11II2(tm+i)

II 1/2 f'(u)t 1/2 " 12 dt + I I II2 dt
2 -o odt I'H ' dt H

+ It I Il 12,

which implies, thanks to (4.22), (5.18) and (5.25),

* ..... **-.
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m+1 /2.. 2 K 5 (Ke 1 +ko)
(5.26) 1 IA- 2  i H dt K 4

0

where K 4(N.) and K5 are two positive constants.

From (5.20), (5.21) and (5.26), we derive:

(527 E(s) - jdu t k 2 + I if (V),12(5I27) II - i (tn)l ds, k 2(B + max H
Sftn dt v V I.EN 3

+ It2(N)e2KS(I +k 0) ]

Finally, from (5.16), (5.19) and (5.27), we infer:

m m
(5.28) IIem+iII1{ + 2 IInI r + 1 Ien+1 - enI2

n=O n=o

KT(011+k0 )

4 k K,(N3) e

where K 6(N.) and K 7 are two positive constants.

4) Estimate of I IT(nk)u ° - TknuI fo %/k 4 n 4 m+l, when TnkuO and

T(nk)uo beo.nz.to. N. for 0 ( n 4 m an 0 4 nk 4 mk + k0 restectively,

where a/k < m 4 a1/k.

To this end, we at first estimate the term I It,(T(tn)u ° - Tnu°)I Iv for 0 <

n 4 m. Formula (5 . 1)k gives:

(5.29) tn+lUn+lu - tnUn + kA(etn+lun+l + (l-O)tnun)

- ktnf(un) + kun+1 + W Aun+•

Let us set: en  tn(u n  U(tn)). From (5.29) and from the equation (5.1) we

deduce:
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(5.30) e= en + kA(en~ + (l-O)en)

-kt.(f(un) - f(u(tn)))

tn+ <su(s)) - . (su( s),__ d s
n ds ds n

" 6kA(tnu(tn) - tn+lu(tii+l))

"s ken + k(un +1 - Un) + Wk AuD+l.

Taking the inner product in H of (5.30) by cn+1 - en we obtain:

4, kI Ien~1 - enlIH [LIle nIIV + IlenlIH + IIUn+l UnI1HI

a'+ klnl- e-nIlV[ekIIUn+ 1I1V + litnu(tn) -tn+lu(tn~l)II

+LIIj [d-S~) S ds u(s))1 tjndsj

or also

Ilen+ 1 I, - III, V 2k L2Ilent V~ + 2k) lent H + 2kf lun+1 -I12

+ .-.- 3- [k 21IiU 112 + k Jn+ liI-(Su(s))112, ds

+ kJ t l~ t n+2 (sV)) d
nn

Summing the previous inequality over n and applying lemma 5.2, we get:
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(5.31) max Ilen 1IIl, C exp kL2(m+1) [k E Ie11i2
0<n<m+1i n=O

m m
+ k E: Ilun+1 - u~l1 + k2 E Ilu"+)1 2,

n=O n-O

+ k +I1-4su(s))I2, ds + k J t .+1 I 2SU(S)I 12 ids]
0 0

But

m m [traI~

(5.32) k E I Iun+1 - UnIl H 2k E IIe1 +1 - eilI + k' -o I I. ds
n=0 n=0 10 d

and

- (5.33) ks 2 : IlUn+1II' ' k2(m+l)B 2

n=O

Finally we derive from (5.31), (5.32), (5.33), (5.28), as well as from (4.22), (5.18)

and (5.26) that

max I11-1 +11 'V ' k1 /2 K(N)eK (
on<rn+l

where K,(Ns) and K. are positive constants.

Hence, we have:

(5.34) max IIT(nk)u ° - Tku K K(

cC/k~n~m+1 CI0

And Theorem 5.1 is proven.

Remark 5.2: If f is globally Lischitz continuous from H into H, one can improve

the estimate (5.34) (see [Crouzeix and Thom e (1)]).
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Remark 5.3: Now let us consider a discretization in space and time of the

equation (5.1). More precisely, if (Vh)h are the spaces given in Section 4.1, we

define an approximation u n  Vh of the solution u of (5.1) at the time tn by the

recursion formula( I+ (I - (1-O)kAh)(l + ekAh)1 + k(l + ekAh)-'Qhf(U h))
(5.1) k

Uoh --- U V h ,

(where Ah and Qh are given in Section 4.1).

Then in the same way as above, one proves that (5.1) h gives rise to a

dynamical system Th which admits an attractor Ak. And Bv(Ah,A) -, 0 as h and k

tend to 0.

Furthermore, if we are in the situation described in Section 4.2 and if kh - 2m

, C where C is a positive constant, one can define a dynamical system Tk which

admits an attractor Ah in Y and B W(,t) 0 as h and k tend to 0.
, k
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6. A Remark on thc Two-Dimensional Navier-Stokes Equations.

Let fl be a regular, bounded domain in R2. The Navier-Stokes equations for

the velocity u(x,t) = (u1 (Xlt),u 2 (x,t)) and the pressure p(x,t), are

-,2 au
Vau +E u.-+ grad p =F in Q x R+,

at i=1 18x.

div u 0 in (IlxR+
-P. (6.1)

u = O on 8nlx R

u (x,0) =U0(X) in nl,

where F and uO are given and v > 0 is the kinematic viscosity. Let us denote by

II'(f) the space (Hi (n))2 for j I or 2 and by L2(f) the space (L2 (fl))2 . We consider

the space

U 0 = 4'(C '(fl)) 2; div 0 0)

and denote by H and V the closures of U in L.2 (nl) and Hl(fl) respectively. The

spaces H and V are provided with the inner products

(u'v) 1: u v dx

C and

((u,v)) 1: Jn -!I -d x
j,k= 1 ax 8X ax j

respectively, where x = (x1 ,x2 ).

We also set lul (uu12and ul((u)/2for u in H and V respectively.

IP d
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Let us denote by P the orthogonal projection of L2(fl) onto H. We define

A = -PA to be the operator with domain D(A) = H2(rl) n V acting in H and use the

same notation for its extension to an operator from V into V'. Since A-' is a

compact self-adjoint linear operator in H, the spectrum of A consists of an

infinite sequence

0 < X1 ( X2  .

of eigenvalues (counted according to their multiplicities) Xn  as n - and there

exists an orthonormal basis (On)hll of H such that

AO n = nn, n = 1,2,...

4' For any N 1, we denote by PN the orthogonal projection in H (and in

.*. V,V ',D(A)) onto the space VN spanned by 01, 02, ... ON' We recall that

"- IV vl X 11/2Ivl, v C V,

(6.2)
IlAy! J XI/ 2 I lv1l, Vv E D(A).

As l is a regular domain, we also have:

(6.3) c Ilull 2 () 4 lAul cIlIullIMn 1 YuE D(A).

For u = (u 1 ,u 2 ) and v - (v1 ,v 2 ) in H1 (fl) we define B(u,v) G V' by

2 N
(6.4) (B(u,v),w) = 1: uE w k dx, Vw E V

j,k=l L e
1

Then B is a bilinear continuous operator from H1 (fl) x H (CI) into V' and this

operator can be extended as an operator from H 0(nl) x H r 2(fI) into V' or H, for

appropriate values of m1 and m2 (see [Temam], for instance). Subsequently, we

shall use in the following inequality

Z'
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(6.5) I(B(u,v),w)l c1lul/'l lul I1/211 vi 11/2 IAvll/ 21wl,

V uEV, vED(A),w E H.

Finally let us recall that

(B(u,v),w) = -(B(u,w),v), Vu,v,w C V.

Using the above notations it can be shown that (6.1) is equivalent to the

following initial value problem

du + v Au + B(u,u)= f in H,

(6.6) 
dt

u(0) = u0

where we assume that f(x) = PF(x) and uo belong to H and V respectively (see

[Temam] for further details). Let us point out that we assume that f does not

depend on t.

Now we introduce the map T(t): V - V, t ) 0, defined by T(t)uo = u(t)

where u(t) is the solution of (6.6). It is well known that T(t)uo exists for any t 0

and any uo E V and that T(t) is a C°-semigroup on V (see [Ladyzhenskaya (1) and

(2)], for instance). In the same papers, she also showed that T(t)uo has its lim as

t -. +- bounded by a constant independent of the initial data, i.e., T(t) is point

dissipative. Since T(t) is compact for t > 0, we deduce from a result of

[Billotti and LaSalle] that T(t) admits a compact attractor A which attracts

bounded sets of V (see [Hale, 2] also].

Now let us consider the following differential system on the space VN

spanned by 01, 02, .. ON :

duN + v AuN + PNB(uN,uN) - PNf(x)dt(6.6)Ns  
d

UN(0) - UoN
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where UON E VN. We introduce the map TN(t) : VN - VN, t ;1 0, defined by

TN(t)UON = UN(t) where UN(t) is the solution of (6 .6 )N. As above TN(t) is a

C°-semigroup on VN (see [T~mam] for instance). In [T6mam, §14.2], it is also

shown that TN(t)UON has its lim as t -" +- bounded by a constant independent of

the initial data and of N. Thus, by [Billotti and LaSalle] TN(t) admits a compact

attractor AN which attracts bounded sets of VN. But thanks to Theorem 2.4 we

obtain a more precise result given in Theorem 6.1. For related results, scc

[Constantin, Foias, Timam].

Theorem 6.1. For any N ) 1, TN admits a compact attractor AN which attracts

bounded sets of VN. Moreover, x(AN, A) - 0 as N .

Proof. We are going to show that the hypotheses of Lemma 2.1 are satisfied. Let

to > 0 be a real number and N1 be a bounded open neighborhood of t. We shall

prove that TN(t) approximates T(t) on N1 uniformly on compact sets of [Ao,+*).

We set : Bo = max I lvj I. By [Temam, lemma 11.1 and lemma 14.3], wc
VEN 1

have, for any N ), 1, for any UON G N1 A VN,

(6.7) sup (sup(IT(t)uoNlI, IITN(t)UONII) 4 CO,
t lo

and

(6.8) sup IAT(t)uONI Ko,
t Ot o

where CO = Co(Bo) is a positive constant depending on Bo only and K o

Ko(Bo,to) is a positive constant depending on Bo and to only.

Now we set u(t) = T(t)uON and uN(t) = TN(t)UON. Let t, > to be a real number;

we at first estimate IluN(t) - PNU(t)II for 0 4 t 4 t,. The function uN - PNu satisfies:

(6.9) dt (UN - PNu) + vA(uN PNu) = PNB(uu) " PNB(UN'UN)
dt

4

.....................................
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Taking the inner product in H of (6.9) by A(UN - PNu), we obtain:

(6.10) 1- d I JUN- PNUII12 + %.1A(UN - PNU)1 2

2 dt

(B(u,u-PNu) + 1B(u,PN u-uN) + B(u-PNUIUN)

+ B(PNu-uN'uN), A(UN-PNu)).

Thanks to the estimate (6.5), (6.10) we obtain

(6.11) 1. a... UN - PN U112 + A1A(UN - PNU)1 2

2 dt

4CjUl/ 2 llll 112llU - PNUI I1121A(u - PNU )11/2A(PNU- UN)l

*+ ClII 1/2 ul11/21 UN - PNUII11/21A(UN - PNu)I. 2

+ C 11U - PNU1/21 IU - PNUI 11/21 IUNI 11/2 IAUNI 1/21A(uN - PNU)I

+ c lIPNU - UP 1 2 1 IPNU - UNI 11/21 JUN' 11/21 AUNI 1/ 2 IAUN - PNu)I.

Using Young's inequality in the form

ab 4 EaP + c b, 1 < p < +*, c > 0, p' D c, - 121

Cp-I ' P pPE/P-1

with p =Aand c 2 and with p =2 and c =2 we infer from (6.11),
3 4 4'

aL I UN - PNuII 2 ( l 2 ul I ull I Iu - P~uI I IA(u - PNu)I
dt

" IU121 huh 12 11UN - PNUl 12

" I UN11 I AUNI IU - PNUI I~U - PNUiI

" 11UNII hAuNI I IPNU - UNI 12I,

or also, by (6.7),
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(6.12) 1 luN " PNUI1 2  4 Cslu N PNuII [ 1 2 IAu i ]

dt

+ c I u - PNUII[ IA(u - PNU)I + IAUNI Iu - PNU ]

where c. C3(Co) is a positive constant depending on c. only. But (6.12) is a

differential inequality of the form

z' a + bz

By Gronwall's lemma, this inequality yields

z(t) 4 z(O) efo b(T)dT + a(s)e f b(T)dT ds,
0

which gives, in our case, for 0 ( t ( tg

(6.13) IIUN(t) - PnU(t)l 12  ec PI (+AUNI)ds x

pti
2x f* (lU-PNUI I lu-PNuIj IAuNI + I Iu-PNuII IA(U-PNU)f}ds

Using the properties of PN and the Cauchy-Schwarz inequality, we deduce

from (6.13) that

-. c~ t (I+ ( t IA U N I 2d s) 1/2 l

(6.14) 1iUN(t) - PNU(t)1 2  c ex

Lx ' - PNu 2ds] 1 [2C'" Jt AUN2 /2 + 2( JIAU12ds] 1/2]

0 0 o

Arguing as in [Temam, §3.1], one proves that, for N ) 1,

t. ti

(6.15) sup J AuN12 dt, JA IU12 dt] 4 C 4(t,,c0 )

where c 4(t1 ,co) is a positive constant depending on t, and co only. Thanks to

*(6.15), we can write:
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(6.16) 1t flu - PNuI12 ds 4 c4 (t1,C0)

Finally from (6.14), (6.15) and (6.16) we derive, for 0 t tj

(6.17) IIUN(t) - PNU(t)1l

where cr5(tl,c0) is a positive constant depending on t, and co only.

Now we want to estimate I1u(t) - PNutl 2 fro t 0 t1. sn*68,w

prove that, for to 4 t 4 (

k2

(6.18) 1 Iu(t) -PNu~) 12

Finally, as ),N+l as N - + *, we deduce from (6.17) and (6.18) that TO~)

approximates T(t) on N1 uniformly on compact sets of [t0,+-).

.17
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7. Approximation of the Damped Wave Equation.

* Let (I be a bounded domain in R , a be a positive constant and consider the

equation

at2 2+ au - Au -f4(u) - g(x) in nl x (,)

(7.1) u=O0 on 8L2,

at /J~

where g belongs to L 2( (1) and (00 belongs to the space X HO(fl x L nl) We

assume that the boundary a(1 of il is smooth enough or that C1 is a convex domain.

Furthermore, we suppose that f E- C3(R) and that there are constants 71 > 0, c, > 0

such that,

If f(V)I ( C1(1V13 7 + 1), If, (V)I 4 C1(1V1 2-7 + 1),

(7.2)

If "(v)I 4 C1(Ivl + 1), If"(v)I 4 C1, for all v C R.

Inequalities (7.2) imply that the map f: 0 E H 1(nl) - f (O{x)) G L 2((l) is a compact,

C2 -mapping from H' () into L 2(fl). Henceforth, we equip the space X with the

norm

(7.3) I 010'I I, (111 +~ I II'MI12 2 )1/2' V(0O) EX

As it was proven in [Babin and Vishik], for any (,0p) C X, Problem (7.1) has a

unique solution u(t), for t ), 0, and the pair (u,-&[) belongs to CO([0,+-);X).
Ot

Furthermore, if we set T(t)(0,P) = (u(t) -Ntt)), for t 0 0, then T(t) X -. X, t 0, is
aOt

a C0-semigroup on X.

Now suppose there is a constant c > 0 so that f satisfies
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*(7.4) fQv)v > -c, f I(v) > -c, for all v E R.

Let us introduce the Liapunov functional V given by

* 01J) [L IVO(X)12 + L tp(X) + F(OWx) + g(x)4(x)] dx,
2

for all (0,0,) EE X, where F(v) - f(s)ds. It was proven in [Babin and Vishik]

that

rV(0,0) LI;I + 110112 - c2,I2 L (1)) Rol(fl)
(7.5) j

V 0.0 1 1 jM122  + C114 + C
VP) 2 Lfl 0 fl A 1'

where C2, C3 , C4 are some fixed positive constants, and that, for t ?T and

for any solution u of (7.1)

(7.6) V~~,. Lt.)-V(u(T,.),-ft-(T,.)) -2ar rIjT~ ,1 dx ds
ONt at J J L otJ

The estimates (7.5) imply that the orbits of bounded sets are bounded. In

particular, there exist two functions C,(R) and C,(R) of R such that, if

then,

(7.8) V(T(t)(,Ot)) 4 V(0,0) 4C 0(R), Vt G R

and

(7.9) IIT(t)(,Oi)IjX 4 C1 (R), Vt G R.

Moreover, it was shown in [Hale, 2] that T(t) is point dissipative and is an

a-contraction. Therefore, due to a result of [Massat], T(t) admits a compact
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attractor A in X, which attracts bounded sets of X (see [Hale (2), Theorem 6.1]).

7.1 AnDroximation by a soecial Droiection method.

Let us recall that the spectrum of the operator -A with domain D(-A) f H 2(fl)

n Hl(fl) consists of an infinite sequence

0 <
0 < X1 4 X2 4 "

of eigenvalues (counted according to their multiplicities), X1 - +. as n -- +- and

that there exists an orthonormal basis (w)n)11 of L2(fl) such that

(7.10) -Awn = XnW n

Note that P, 1/2Wn)l is an orthonormal basis of HI(fl). For any N ) 1, we

denote by PN the orthogonal projection in L2(fl) (and in Ho(fl)) onto the space VN

spanned by wl,w 2, .... wN, and we consider the following equation in VN:
Oa2Un 11 + 2 UN  = -

-- N + 2 -,t - AuN = -PNf(uN) - PNg(x),

(7.1) N (ONOU)

/t=o

where (0 NION) belongs to the space XN i VN x VN. We can prove, as for the

problem (7.1), that, for any (ON ,ON) in XN, the equation (7 .1 )N has a unique

solution uN(t), for t ?, 0. Moreover, if we set TN(t)(ON,ON) = (UN(t), 8 UN(t)/ 8 t, for

t ) 0, then TN(t) : XN -. XN' t ) 0, is a C°-semigroup on XN.

Theorem 7.1. For any N 0 1, TN admits a compact attractor AN which attracts

bounded sets of XN. Moreover, 6x(AN,A) - 0 as N

Proof.

1) We at once verify that, for t T T, for any solution uN of Equation (7 .1 )N,
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(7.11) V(uN~) -at.) N v(uN,., - N (T,.) -2a J!UN (s,x)ds.
N~tI-)I- at'01N(T, at T at

The estimates (7.5) imply that the orbits of bounded sets are bounded

*independently of N. In particular, TN(t)(ON@N) satisfies the estimates (7.8) and

(7.9), for any (ONION) satisfying (7.7). As TNO) is compact, the orbit through

(ONION) is precompact and its w-limit set must be an invariant set. Relation (7.11)

implies that its w-limit set belongs to the set EN of the equilibrium points. Using

the condition (7.4), one easily proves that there exists a constant ro > 0 such that

(7.12) VN ), 1, EN C Bx(ro),

where, for any r > 0, BX(r) = ((0,0) X: 1 1(0,0t)1Ixb < r). Let us also set BX (r)
N

BX(r) nl XN. Then, for r, 2r., the ball BX (rl) attracts all points of XN (i.e., for
N

any (ONION) C ,N there exists tN ) 0 such that, for t 0 tN, TNO)(NION)

E B X(r,)). Let us remark that the orbit of BX (r1 ) is included in BX (C (r )),

where C1(rl) is given by (7.9), and that BX (Cl(rl)) attracts a neighborhood of

any point and, hence, all compact sets of XN. We now set: R0 = ,C().

Arguing as in [Hale, 1, Theorem 2.11, one finally shows that T NMt admits a

compact attractor AN which attracts bounded sets of XN and is included in thc

ball BX(RO) r) XN.

2) In order to prove that BX(AN,A) -. 0 as N *,we show that the hypotheses of

Lemma 2.1 hold. Let N, BX(R 1 ) be a neighborhood of A. We shall prove that

TNMt approximates T(t) on N, uniformly on compact sets of [0,+-). Let t, be any
ap u

real number. We at f irst estimate I I(u(t) - PNu(t), 4-(t) - -a-(t))I Ix f or 0 (t 4
at at

where (u(t), 4-Jt)) = T(t)(ONON) and (ONION) E N1 r) XN. We have:
at

(7.13) - (u - PNu) + 2a (u N -A NU -( Pat 2 at Of~)-A~ ~) ( Pf(U) -(1 -PN)g(X).
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Taking the inner product in L2(fl) of (7.13) by (u - PNu), we get after anat
integration from 0 to t:

(7.14) 1 j (u - PN u)(t)l 12( + I Iii(t) - PN u(t)l 121

4 5.i (sup I I(I-PN)f(u(S))I t' 2 + I I(I-PN)g(X)l 122

a ENt]L ()I n

Since f is a compact mapping from H,'(fl) into L2(CI) and u(s), 0 4 s ( t, belongs to

the bounded set B(C1(R1 )) - (v G HI(fl) I lvI 1 4 C,(R,)), we deduce from

(7.14) that, for 0 4 t 4 (

(7.15) 11 !-.(u - PNu)(tfl 1 0 (nl) + I Ju(t) - NutI~ A 1 Nt, 1 R)

where

(7.16) lim 77(N,t 1,C1(R1 )) = 0.

Now we estimate I I(PNu(t) - uN(0) (PNu( t) -uN(t)))I IX for 0 4 t tj, where

at a

(7.17) '2!2 (UN - PNu) + 2ax L (UN -PNu) - AOUN - PNU) = P14(fU) - Q~UO)

Taking the inner product in L 2 f'o(71)wt at- (N - PNu) eoti

(7.18) 1a a Pu11 2  (1a u - P 12
28 ~(N~ PN ( (I UN PNUI

2a N PN I A + 2l a PNuI6n)

where L > 0 is the Lipschitz constant of f in the ball B(C,(Rp)). Now using

Gronwall's lemma, we derive from (7.18) as well as from (7.15) that, for 0 ( s 4 t

t1L2

(7.20) 11 L~(uN -N rU)It)II1!2n)+ "UN'' PN' H0(11fl)ey- Ln(Nt,,(;)
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The estimates (7.15), (7.16) and (7.20) show that TN(t) approximate T(t) on N,

uniformly on compact sets of [0,+-).

7.2. A more general Galerkin method.

Let h > 0 be a real parameter which will tend to 0 and (Vh)h be a family of

finite-dimensional subspaces of Ho(fl). We denote by [-,.] the inner product of

L2 (fl) and by a(.,-) the inner product of Ho(fl), i.e.,

Vv E H'(n), Vw E Ho(n), a(v,w) = fVv Vw dx.

As in Section 4.1, we denote by Qh E L(L 2(f);Vh) and Ph E L(Hl(fl);Vh) the

orthogonal projectors on Vh in the spaces L2(f) and H (f) respectively. We also

introduce the operator Ah G L(Vh;Vh) defined by

Vvh C Vh, (AhWh,Vh) = a(wh,Vh) for Wh C Vh.

We consider the following equation in Vh

__Uh au h

t - 2a i + Ah Uh  -Qhf(Uh) Qhg(X),
(7.1)

~h' li =(Oh@h)

where (Oh'h) belongs to the space Xh V h x Vh. As in Section 7.1, we

introduce the map Th(t): Xh - Xh, for t ; 0, defined by Th(Ohh) = (Uh(t),- (t))
at

where uh is the solution of (7 . 1 )h. So we obtain a C°-semigroup on Xh. As in

Section 4.1, we need some additional hypotheses on the spaces (Vh)h:

(7.21)(i) there exists a constant K o > 0, independent of h, such that, for any h > 0,

I IQhIIL(H'(N);H1(n)) 4 Ko
0 '0

. . . . . . . . . . . . . . . . . . . . ..
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and

(7.21)(ii) there exist two constants KA > 0 and e > 0, independent of h, such

that, for any w in Hl(fl),

1 1w - PhWIIL2(0 ) + 11w - QhWI IL2(0 ) 4 Klh IIwlIon ) .

Finally we introduce the Hilbert space Y a L 2(fl) x H-I((l), normed by I I(0,)l I =

1 1,I + 114112 )1/2

Now we are able to prove the following result.

Theorem 7.2. For any h > 0, Th admits a compact attractor Ah which attracts

bounded sets of Xh and is contained in the ball Bx(R o) r Xh' where R o is a constant

independent of h. Moreover, By(Ah,A) - 0 as h -" 0.

Remark 7.3. In Section 4, we proved that sv(Ah,A) - 0 as h -, 0. Here, we can no

longer prove that 6x(Ah,A) 0 as h 0, becauseT(t) has no longer a smoothing

action.

Proof of Theorem 7.2.

1) At first we show in the same way as in the proof of Theorem 7.1 that, for any

h > 0, Th admits a comapct attractor Ah which attracts bounded sets of Xh and is

contained in Bx(R o) r) Xh, where R o is a constant independent of h. Remark that

Ro can be chosen so that A is also contained in Bx(Ro).

2) Now let us check that, for any r > 0, there exists a constant L(r) > 0 such that,

for all v and w in the ball B(r) = (v G Ho(r) I Ivi I Lo(Cl) r}, we have

(7.22) I If(v) - f(w) -i l )4 L(r)I lv - WI1L2 () .

-" "., S * * .. . . . . . . .'.- ... ....-. " " "". .".•.. .". . . . . . ' ' "'. " ". . -"
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Indeed we can write

I If(v) - f(w)j I = sup fJ,(f(v(x)) - f(w(x)))(x)dx* --aE4(f) I1 1~ HZ(fl)

0 11

Ssup J(110 f '(w(x)+T(v(x)-w(x)))(v(x)-w(x))$(x)dxds
'(0) IMI~tI I Ho'(n)

Hence, using the hypothesis (7.2), we obtain

(7.23) 1 If(v) - f(w)I II su E SuI.c . . I fv(x) - w(x)2dx] 1/2 x
IIH'11) I ICJ I

Un 2(jv(x)IS + Iw(x)I 1 + 1)dx] [. IV(X)16dx] 1/6}

where IS - sup(3,6-3.). As Hi(fl) 4 L6 (n), the property (7.22) is a direct

consequence of (7.23).

au h
3) Now, for any ti > 0, we estimate II(u(t) - uh(t),8M.(t) - -t))l l, for 0 ( t ( t

where u(t) and uh(t) are the solutions of the equations (7.1) and ( 7 . 1 )h'

respectively, with initial condition (Ohoh) C Bx(Ro). Thanks to the hypothesis

(7.21)(ii), we have, on the one hand,

(7.24) I u(t) - Qhu(t)I 2 ((I) KlheC1 (Ro),

and, on the other hand,

.- III - sup [ '- Qhu ' v " Qh v]D ~--(t)"t QhU(t)l sup(n , at n atlln

• Qtu QhV 1,2(n)

. .. 0 at . L. ..



-64-

which gives

(7.25) 11-0 - a QhU(t) 11H1(f 2KlheCl(Ro).

It remains to estimate the term I(QhU(t) - uh(t),t QhU(t)- Ut))Ily for
a8t at

0 4 t 4 t. Note that the operator Qh can be extended to a continuous, linear

operator from H1 (fl) into Vh and that thus the element uh - Qhu satisfies the

equation:

(7.26) at2 (uh - QhU) + 2a - (uh - Qhu) + Ah(Uh - Qhu) = -Qh(f(Uh) - f(u))

- (AhQh - QhA)u.

Let us introduce the operator ShE L(H (f0;Vh) given by

(7.27) Vf E H'(fl), a(Shf,vh) = [f,vh], Vh F Vh.

Clearly, one has

(7.28) IIShfil 4 cilfils 1(fl,

where c > 0 is a constant independent of h.
Taking the inner product in L (jj) of (7.26) by Sh(2t(u h  QhU)) and using the

relation (7.27), we obtain:

(7.29) a(,2 Sh(Uh - QhU), - Sh(Uh-QhU)) + 20(ShY.tUh-QhU), Sh !t Uh-Qh
U )

+ a(uh - QhU, Sh -(uh - QhU))

-Ifah an ~ h 5

-[f(uh) - f(u),Shs--(u h QhU)] + a(u QhUSh - QhU))

But a(u - QhUSh "uh - QhU)) - a(PhU - Qhu, Sh -(u h - QhU))
at ath

- ~ ~ ~ ~ !~ [PU QQh-( - =
[Phu - Qhu , (Uh " QhU)1 [Phu U,-(Uh-QhU)]

8at
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and

a(uh- Qhu, Sh i-uh - QhU)) = [Uh - Qh U , W-"(u h " QhU).
at atU

Then, from (7.29) we can derive the following inequality:

2 0 I Sh(Uh -QhU)) 2 I' Sh(Uh - QhU)J I1atoM )  H1 M)

+ -' IUh QhU 1122 atL 2(0)

4 1 If(u) - f(uh)I HW~l)l I -- Sh(Uh QhU) I H(l)

+ Ilu - Phull 2(fl)l I Uh Qhu)I pL2()

at h

Using the property (7.22) and the fact that (u, - ) and (Uh,-- belong to
at a

Bx(CI(Ro)), we infer from the above estimate that

(7.30) L A- Sh(uh- Qhu)11 2  + aIUh - Qhu 2

L2(Cj(RO)) f u-Q' :~(l

u - 1 + I IUh  - QhUI 1L2(n )

+ 2C1(Ro)IIu - PhUII2 .

Integrating (7.30) from 0 to t and using Gronwall's lemma as well as the

hypothesis (7.21)(ii), we get, for 0 ( t 4 t19

(7.31) l I Sh(Uh - Qhu)(t)l 12 +o U _ " QhU)(t)(1l) 12 Ksth

where K2 > 0 and K. > 0 are two constants depending on Ro only. Now let

us remark that

...U " - " . " " '' : .-, .-" ; : .: .. .. " . ... '-",'-'."



LI
-66-

I Io Sh(Uh QhUl - SUP L(Uh Qhu > v]H- (=) Ho n )  11I lI n

Sli= S (uh - QhU)'Qhv]

-SUP a(LSh(uh - Qhu)'Qhv)
0 ot n  

14v(~n)

and therefore, thanks to the hypothesis (7.21)(i),

(7.32) I IShUh - Qhu)II . 'Ko I1-j sheub - Qhu)II 1

(7.32) &HH 01

Finally, by (7.24), (7.25), (7.31) and (7.32), we obtain, for 0 4 t 4 t( ,

(7.33) ) - Uh(t),t)) K t/ 2 e K5t 1 h/2

where K 4 and K. are positive constants depending on R o only.

4) Since, for any h > 0, A h C Bx(Ro), we deduce from the property (7.33), by

arguing as in the proof of Proposiiton 2.10 (or in Remark 2.7), that, for any ( 0 >

0, there exists ho > 0 such that, for h ( ho, Y.AhA) ( e

Remark 7.1. The results of theorems 7.1 and 7.2 extend easily to the cases where

(I is a bounded domain in R or R2 (for the conditions on f, see [Babin and Vishik]

or [Hale, 2]).

%I

-.%.-...... ..- ,.''.. . ... .-. ".'-.... , ,.............................. .
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